\square

B.TECH

(SEM-III) THEORY EXAMINATION 2019-20 FLUID MECHANICS
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

a.	What do you understand for Diffusers?
b.	Define Stokes Law.
c.	Define Turbulent Boundary layer.
d.	Explain the Drag and Lift.
e.	Write important Characteristics of Stream Line.
f.	Write the difference between Eulerianand Lagrangian approach.
g.	Write short note on Pitot Static Tube.
h.	Explain gauge pressure, vacuum pressure and absolute pressure with suitable sketch.
i.	Define the term Cohesion and Adhesion.
j.	Distinguish between Rotational and Irrigational Flows.

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$

a.	What do you mean by Separation of Boundary Layer?
b.	Derive the expression for the energy head loss in a pipe expansion
c.	Determine the thickness of the boundary layer at the trailing edge of smooth plate of length 4mtr and width in stationary air. Take kitn matic viscosity of air $1.5 \times 10-5 \mathrm{~m} 2 / \mathrm{s}$.
d.	Derive expressions fory two dimensionless numbers.
e.	What is the importa $4 \mathrm{~m} / \mathrm{s}$

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$

a.	Prove that the viscous flow through a circular pipe the kinetic energy correctionfactor is equal to 2.
b.	A horizontal pipe suddenly enlarges from a diameter250mm to 500mm. thedischarge of water through the pipe is $0.3 \mathrm{~m} 3 / \mathrm{s}$ and the intensity of pressure inthe smaller diameter pipe is $100 \mathrm{kN} / \mathrm{m} 2$. Determine (i) The head loss due to sudden enlargement (ii) Power loss due to enlargement (iii) Intensity of pressure in the larger diameter

4. Attempt any one part of the following:
$10 \times 1=10$

a.	Find the discharge from an 80 mm diameter external mouth piece fitted to a side of a large vessel if the head over the mouthpiece is 6 mtr.
b.	What do you understand by total pressure and center of pressure? A circular plate 2.5 m diameter is immersed in water, its greatest and least depth below the free surface being 3 m and 1m respectively. Find total pressure and center of pressure.

5. Attempt any one part of the following:
$10 \times 1=10$

a.	A tank contains water up to the height of 0.5 m above the base. An immiscible liquid specific gravity 0.8 is filled on the top of the water up to 1 m height. Calculate total pressure on one side of the tank and the position of center of pressure.
b.	How momentum equation used in determining the force exerted by a flowing fluid in pipe bend?

6. Attempt any one part of the following:

10x1=10

a.	Find the discharge through a trapezoidal notch which is 1 m wide at the top and 0.4 m at the bottom and is 30 cm in height. The head of water on the notch is 20 cm. Assuméc C rectangular portion $=0.62$ while for triangular portion $=0.60$.
b.	Explain the VON Karman Integral Momentum Equation

7. Attempt any one part of the following:

10x1=10
a. \quad Discuss geometric, kinematic and dynamic similarity. Are these equations obtainable?
b.

Derive Bernoulli's equation using Euler equation of motion.

